Microstructure continuum modeling of an elastic metamaterial
نویسندگان
چکیده
Elastic metamaterials have unusual microstructures that can make them exhibit unusual dynamic behavior. For instance, if treated as classical elastic solids, these materials may have frequency-dependent effective mass densities which may become negative in certain frequency range. In this study, an approach for developing microstructure continuummodels to represent elastic metamaterials was presented. Subsequently, this continuum model was used to study wave propagation and band gaps in elastic metamaterial with resonators. In contrast to the use of the conventional continuum theory with which the effective mass density would become frequency-dependent and negative, the main advantage of the microstructure continuum model is that the local microstructural deformation/motion is accounted for with the introduction of additional kinematic variables. Moreover, the material constants of the microstructure continuum model are explicitly expressed in term of the properties of the host medium and the resonator. The accuracy of the microstructure continuum model was evaluated by comparing dispersion curves of harmonic waves to those obtained by the finite element analysis based on the exact geometry of the elastic metamaterial. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Multi-displacement microstructure continuummodeling of anisotropic elastic metamaterials
An elastic metamaterial made of lead cylinders coated with elliptical rubbers in an epoxy matrix is considered, and its anisotropic effective dynamic mass density tensor is numerically determined and demonstrated. To capture both dipolar resonant motion and microstructure deformation in the composite, a new multi-displacement microstructure continuum model is proposed. In the formulation, addit...
متن کاملKing post truss as a motif for internal structure of (meta)material with controlled elastic properties
One of the most interesting challenges in the modern theory of materials consists in the determination of those microstructures which produce, at the macro-level, a class of metamaterials whose elastic range is many orders of magnitude wider than the one exhibited by 'standard' materials. In dell'Isola et al. (2015 Zeitschrift für angewandte Mathematik und Physik66, 3473-3498. (doi:10.1007/s000...
متن کاملDissipative elastic metamaterials for broadband wave mitigation at subwavelength scale
In this paper, an elastic metamaterial with multiple dissipative resonators is presented for broadband wave mitigation by properly utilizing interactions from resonant motions and viscoelastic effects of the constitutive material. The working mechanism of the metamaterial to suppress broadband waves is clearly revealed in a dissipative mass-in-mass lattice system through both negative effective...
متن کاملExtreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging
Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmis...
متن کاملNegative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial.
Negative refraction of elastic waves has been studied and experimentally demonstrated in three- and two-dimensional phononic crystals, but Bragg scattering is impractical for low-frequency wave control because of the need to scale the structures to manageable sizes. Here we present an elastic metamaterial with chiral microstructure made of a single-phase solid material that aims to achieve subw...
متن کامل